Comparison of Energy Consumption and Green-House-Gas emissions of different mobility scenarios with Optiresource[®]

The "Well-to-Wheel" Optimizer used at Daimler

Dr. J. Wind, <u>P. Froeschle</u> Electrical Vehicle Symposium 23, Anaheim, December 3, 2007

What are the reasons for the current debate?

Al Gore: An inconvenient truth

– UNO Climate report, Feb. 2007 –

The recent CO_2 - debate takes on different shapes throughout the world

Caption of presentation / Department / Date (year-month-day)

Optiresource is a tool for quick and reliable decisions Different Optiresource versions for different target groups

Web/Exhibition version

Caption of presentation / Department / Date (year-month-day)

The Web version is designed for easy use by non-experts

The expert version has a wide variety of funcionalities

The user can

- compare different energy chains in terms of energy consumption, GHG emissions etc.
- detect the chains allowing for the optimization of the consumptions and emissions.
- identify the impact of different energy scenarios.

Different modes

- "Query mode": the user selects the chains according to certain criteria, the results are visualized (almost 1000 chains available)
- "Scenario Mode": the user defines scenarios in terms of energy supply and energy demand and then visualizes and compares them

Optiresource Query Mode

			Prima	ry energy	/	rocess Fuel Powertrain		
CHAIN	Complete: Well to Wheel		Primary e	nergies 4 / 19		ocesses 6 / 27 Fuels 4 / 7 Powertrains 3 / 15		
CRITERIA	2 Selected		Nuclear		^	wood col., col., gas.+reforming, H2 pipe. on site colm. Liguitied Petroleum Gas (LPG) Hybrid: Otto Engine (conver Difference) wood col., O/S gas.+reforming, H2 pipe. O/S colm. Electricity Difference Difference	entional - PISI) 🔨	
TIME	1 Selected		Nuclear Renewable		_	wood col.,black liquor gas.+ref., H2 pipe, 0/S com. wood farm., cen. das.+ref., H2 pipe, 0/S com. wood farm., cen. das.+ref., H2 pipe, 0/S com.	e Filter (DICI)	GO
REGION	Europe		Sun			Hydrogen Diesel Direct Injection (DIC) Otto Direct Injection (DIS) Otto Direct Injection (DIS)		-
CAR	1 Selected		Wind		~	Weod farming, een. gas. +reforming+ H2 liq., road Uquid Hydrogen Synthesis 0 / 1	Otto Engine (conventional - PISI)	
				Visualizatio Absolute Energy Co	n Tsumptio	Init Order 1 Order 2 WTT TTW Solut Show Fossi eq / 100 Km g CO2eq / Km by energy asc. by fuel Show energ Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	() R
				Visualizatio Absolute	n Tsumptio	Init Order 1 Order 2 WTT TTW Split WTT & eq /100 Km g CO2eq / Km yby energy asc. yby fuel Show energ Absolute R1 Greenhouse Emissions - Absolute	ill Energy TTW gy reference chain variance	() R
2010 / Natural C Hydrogen / Hyb	Gas / NG pipe 4000km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class	pe, O/S com. / C	ompressed	Visualizatio Absolute Energy Co	n Tsumptio	Init Order 1 Order 2 WIT TTW Split WIT 8 eq /100 Km g CO2eq / Km by energy asc. by fuel Show energy Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural G Hydrogen / Hyb 2010 / Wind / el Hybrid: Fuel Ce	Gas / NG pipe 4000km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class I. gen. (wind), cen. e.sis, H2 pipe, O/S all Hybrid / A Class	pe, O/S com. / C com. / Compress	ompressed ed Hydrogen /	Visualizatio Absolute Energy Co	n Insumptio	Init Order 1 Order 2 WIT TW Split WIT & eq /100 Km g CO2eq / Km by energy asc. by fuel Show energ Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural G Hydrogen / Hyb 2010 / Wind / el Hybrid: Fuel Ce 2010 / Wood W/ Hydrogen / Hyb	Gas / NG pipe 4000 km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class I.gen. (wind), cen. e.sis, H2 pipe, O/S all Hybrid / A Class /aste / wood col., cen. gas.+ref., H2 pip brid: Fuel Cell Hybrid / A Class	pe, O/S com, / C com, / Compress re, on site com, /	ompressed ed Hydrogen / Compressed	Visualizatio Absolute	n nsumptio H H	Init Order 1 Order 2 WIT TTW Split WIT 8 eq /100 Km g CO2eq / Km by energy asc. by fuel Show Herg Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural (Hydrogen / Hyb 2010 / Wind / el Hybrid: Fuel Ce 2010 / Wood Wit Hydrogen / Hyb Calo / Natural (Gas / Hybrid: O	Gas / NG pipe 4000 km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class I. gen. (wind), cen. e.sis, H2 pipe, O/S ell Hybrid / A Class Vaste / wood col., cen. gas.+ref., H2 pip foid: Fuel Cell Hybrid / A Class Gas / NG pipelne 4000 km, on site com Dito Engine (conventional - PISI) / A C	pe, O/S com. / C com. / Compress ve. on site com. / pression / Compr ass	ompressed ed Hydrogen / Compressed essed Natural	Visualizatio Absolute	n Insumptio	Init Order 1 Order 2 WIT TIW Split WIT 8: eq / 100 Km g CO2eq / Km by energy asc. by fuel Show energy Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural C Hydrogen / Hyb 2010 / Wind / el Hydrogen / Hyb Hydrogen / Hyb 2010 / Natural C Gas / Hybrid: D 2010 / 011 / oll / el Particul, Fitter (1 Particul, Fitter (1	Gas / NG pipe 4000 km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class I.gen. (wind), cen. e.sis, H2 pipe, O/S all Hybrid / A Class Vaste / wood col., cen. gas.+ref., H2 pip trid: Fuel Cell Hybrid / A Class Gas / NG pipelme 4000 km, on site com trid Engine (conventional - PISI) / A C briding, ship, diesel refining, land / Diese (DICI) / A Class	pe, O/S com. / C com. / Compress .e. on site com. / pression / Compr ass as	ompressed ed Hydrogen <i>i</i> Compressed essed Natural I Dir. Inj.	Visualizatio Absolute	n Insumptio	Init Order 1 Order 2 WIT TWV Split WIT 8 eq /100 Km g CO2eq /Km by energy asc. by fuel Show Fossi Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural (Mydrogen / Hyb Hydrogen / Hyb Hydrogen / Hyb Hydrogen / Hyb 2010 / Maruna (Gas / Hybrid: O 2010 / Joil at Particul, Filter (1 Qconventional - 1	Gas / NG pipe 4000km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class I. gen. (wind), cen. e.sis, H2 pipe, O/S ell Hybrid / A Class Vaste / wood col., cen. gastref., H2 pip brid: Fuel Cell Hybrid / A Class Gas / NG pipeline 4000km, on site com Dito Engine (conventional - PISI) / A C Intilling, ship, diesel refining, land / Diese DICI) / A Class	pe, O/S com. / C com. / Compress e. on site com. / pression / Compr ass al / Hybrid: Diese soline / Hybrid: C	ompressed ed Hydrogen / Compressed essed Natural I Dir. Inj. Itto Engine	Visualizatio Absolute Energy Co	n Insumptio H H H	Init Order 1 Order 2 WTT TTW Split WTT a eq /100 Km g CO2eq /Km by energy asc. by fuel Show Fossi Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural C Hydrogen / Hyb 2010 / Wind / el Hybrid: Tuel Ce 2010 / Wood Wit Hybrid: D 2010 / Natural C 2010 / Oil / oil di 2010 / Oil / oil di Hydrogen / Hybridge	Gas / NG pipe 4000km, cen. ref., H2 p brid: Fuel Cell Hybrid / A Class I. gen. (wind), cen. e.sis, H2 pipe, O/S ell Hybrid / A Class Model (State / wood col., cen. gas.+ref., H2 pip faste / wood col., cen. gas.+ref., H2 pip faste / wood col., cen. gas.+ref., H2 pip dif. Fuel Cell Hybrid / A Class Gas / NG pipeline 4000km, on site com strilling, ship, disel refining, land / Diese OICD / A Class trilling, ship, gasoline refining, land / Ga PISD / A Class Gas / NG pipe 4000km, cen. ref., H2 p Mid. Otto Engine (conventional - PISI)	pe, O/S com. / C com. / Compress ve. on site com. / ass sl / Hybrid: Diese soline / Hybrid: Diese soline / Hybrid: C pe, O/S com. / C / A Class	ompressed ed Hydrogen <i>i</i> Compressed essed Natural I Dir. Inj. Jito Engine ompressed	Visualizatio Absolute Energy Co	n Insumptio	Init Order 1 Order 2 WTT TWV Split WTT a' eq /100 Km g CO2eq /Km Dy energy asc. Dy fuel Show for energy Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R
2010 / Natural C Hydrogen / Hyb Jollo / Wind / el Hybrid: Fuel Ce 2010 / Wiod Wit Hydrogen / Hyb 2010 / Natural C Gas / Hybrid: O 2010 / Oil / oil d Particul, Fitter (U conventional - I 2010 / Natural C Hydrogen / Hyb 2010 / Wind / el Hybrid: Otto En	Gas / NG pipe 4000km, cen. ref., H2 p brid; Fuel Cell Hybrid / A Class ell Hybrid / A Class all Hybrid / A Class faste / uood col., cen. gas. rref., H2 pip brid: Fuel Cell Hybrid / A Class Gas / NG pipeline 4000km, on site com Dito Engine (conventional - PISI) / A C drilling, ship, diesel refining, land / Dies- DICD / A Class drilling, ship, gasoline refining, land / Ga PISD / A Class Gas / NG pipe 4000km, cen. ref., H2 p brid: Otto Engine (conventional - PISI) J. gen. (wind), cen. esi., H2 pip, O/S gine (conventional - PISI) / A Class	pe, O/S com. / C com. / Compress e. on site com. / pression / Compr ass al / Hybrid: Diese soline / Hybrid: C pe, O/S com. / C / A Class com. / Compress	ompressed ed Hydrogen / Compressed essed Natural I Dir. Inj. Dito Engine ompressed ed Hydrogen /	Visualizatio Absolute Energy Co H H H	n Insumptio	Init Order 1 Order 2 WIT TWV Split WIT 3 eq /100 Km g CO2eq /Km by energy asc. by fuel Show Fossi Absolute R1 Greenhouse Emissions - Absolute	il Energy TTW gy reference chain variance	R

Example for WTW results in the Query Mode

Example for WTW results in the Query Mode

The Optiresource findings for the example query are clearly in favor or renewable hydrogen as a fuel

- By far the lowest GHG emissions and very low energy consumption are achieved by a **Fuel Cell vehicle** powered by H2 from wind energy.
- Hydrogen from NG shows even lower energy consumption but clearly higher GHG emissions than H_2 from wind. However GHG emissions of this pathway are already lower than those from conventional ICEs.
- An **H2 ICE** powered by hydrogen from NG is the worst of all shown both in terms of energy consumption and GHG emissions.

Both in terms of energy consumption and GHG emissions, the **Fuel Cell vehicle** is the best of all alternatives shown

The Scenario mode lets one compare different scenarios in terms of energy consumption and GHG emissions

CAR Optiresource 2.1 - New Scenario							
Eile Edit View Mode Help About							
Definition of the scena	ario 2 / 6 🧧	Definition of the number of car or k	m and of the car types				
Car	r	Powertrain	Fuel	Primary energy	Process		
CHAIN from the Powertrain V Car 0	1/13	Powertrains	Fuels	Primary energies	Processes		
TIME 2010 A Clas	ss 🔥						
REGION Europe C Clas	ss Dass						
CARS N° V 46876000 V CLS C E Clas	Class SS						
G class		1.2 2					
GO	100 %	% Km	3				
	Class 100	5 Data 100 13970 Diesel Direct Inj. Particulate F 33 20000	 1 Data 100				
• •		Bectric Vehicle with Li-Ion Bat 1 1000	Diesel 100 1 Data 100]			
0		Hybrid: Fuel Cell Hybrid 1 11000	Bectricity 100 1 Data 100]			
0		Otto Engine (conventional - PI 64 11000	Compressed Hydrogen 100 1 Data 100]			
0		Otto Engine (conventional - PI 1 11000	Gasoline 100 1 Data 100]			
0			Compressed Natural Gas 100]			
DATA CODE	F	RESULTS					
		visualization Int	Order 1		Show Foss	I Energy	
ی 🚱	\bigcirc	Absolute MJt CO2eq	by energy asc.		Show ener	gy reference chain variance	
Energ	gy Consumption - Absolute	Gree	nhouse Emissions - Absolute	1	lotal Vehicle - Absolute	Total Km - Absolute	_
84% PISI, 16% DICI							
Germany 2010- Wuppertal Institute	n i		in i				
04% PISI, 33 % DICI DPF, 1% EV U-lon (Eu mix), 1 % HFC (NG 1000 km pipeline -		i i i i i i i i i i i i i i i i i i i		<u>i</u> l			
0	0,25 0,5 0,75 10 ¹²	5 1 1,25 1,5 0 FMU	0,25 0,5 0,75 10 [®] t C02eq	1 1,25 D	2,5 5 10 7	0 2,5 5 7,5 10 ¹¹	

Very good agreement between Optiresource data and real values

	Total energy consumption for passenger cars tank-to-wheel (TTW) (MJ)	Energy consumption per 100 km TTW (MJ/100km)	Total GHG emissions from passenger cars TTW (tons)	GHG emissions per km TTW (g _{CO2eg} /km)
Data for German passenger cars in 2005	1.48 x 10 ¹²	255	110 x 10 ⁶	189
Results from Optiresource [®] for simplified scenario for Germany 2005	1.22 x 10 ¹²	210	92 x 10 ⁶	158

Optiresource figures are slightly lower that real values because

- 2002 compact class reference vehicle was used while actual car fleet is older with higher fuel consumption and GHG emissions.
- Compact class reference vehicle does not represent the variety within car fleet.
- Real driving patterns differ from NEDC.

Definition of example scenarios

		Szenarios (Share of driv e trains)						
Drive Train	Fuel	Base scenario	20% Hybrid Electric Vehicles	20% Biodiesel Vehicles	20% Fuel Cell Vehicles, Wind	20% Battery Electric Vehicles, Wind		
Otto engine (Port injection)	Gasoline from crude oil	77%	67%	67%	67%	67%		
Diesel engine (Direct Injection with particle filter)	Diesel from crude oil	23%	13%	13%	13%	13%		
Diesel engine (Direct Injection with particle filter)	Biodiesel from rapeseed	-	-	20%	-	-		
Parallel Hybrid with Otto engine	Gasoline from crude oil	-	10%	-	-	-		
Parallel hybrid with Diesel engine	Diesel from crude oil	-	10%	-	-	-		
Hybridized Fuel Cell Drive Train	Hydrogen from Wind energy (by electrolysis)	-	-	-	20%	-		
Li-Ion Battery and Electric Motor	Electricity from Wind energy	-	-	-	-	20%		

Comparion of the scenarios in terms of energy consumption and GHG-emissions

Scenario Title	Energy Consumption - Absolute	GHG Emissions - Absolute				
Base Scenario						
20% Hybrid Electric Vehicles						
20% Biodiesel Vehicles						
20% Fuel Cell Vehicle Hydrogen from Windenergy						
20% Battery Electric Vehicles Electricity from Windenergy						
	0 0,25 0,5 0,75 1 1,25 1,5 10 ¹² MU	0 0,51 1,52 2,53 3,54 4,55 5,56 6,57 7,58 8,59 9,510 10 ⁷ t CO2eq				

The Optiresource analysis of the example scenarios shows FCV to be the only real alternative for the future

- In terms of GHG emissions every alternative scenario is better than the reference scenario
- However, only the introduction of Fuel Cell vehicles or battery electric vehicles lead to a significant reduction of GHG emissions as well as energy use
- **BEV** show a very similar effect on GHG emissions as **FCV** with even lower energy consumption

Due to still significant difficulties of battery electric vehicles, **Fuel Cell vehicles** are the only mid term alternative for sustainable mobility

Thank you!

