DAIMLERCHRYSLER

The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium

Well-to-Wheel Visualization

Dr. Christian Mohrdieck Director Fuel Cell Drive System Development

Marco Piffaretti Protoscar AG

Dr. J.Wind, P.Froeschle

Yokohama, 23 - 28 October 2006

Index

Table of Content

- Motivation of an OEM for alternative drivetrains
- Well-to-Wheel (WtW) parameters and data origin
- Criteria to define a vehicle developement strategy
- Sample WtW-analysis and results until today
- Basic specifications of Optiresource-Car software
- Sample visualization of WtW-results with OPTIRESOURCE
- Outlook and next steps
 - DaimlerChrysler Stand EVS-22 for immediate trials
 - www.optiresource.org for further information
- Optiresource Foundation

Motivation of an OEM for alternative drivetrains

- Individual mobility and efficient transport are an important basis of modern society and economy
- An affordable, reliable and environmentally benign long term fuel supply is a prerequisite for unrestricted mobility

Driving Forces

- Effective global reduction of CO₂ Emissions
- Securing of Energy Supply by Reducing the Dependence on Oil Imports from Politically Unstable Regions
- Reduction of the Consumption of Fossil Fuels, and
- Need for Cleaner Fuels to Support Emission Reductions

Elements of a hydrogen supply infrastructure

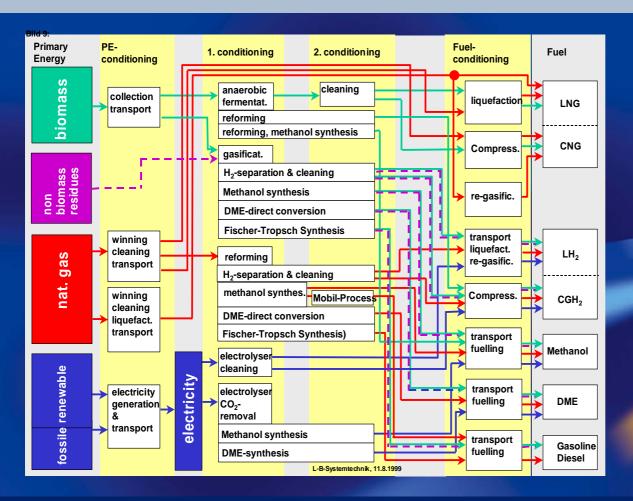
Primary Energy

- Crude Oil
- Natural gas
- Coal
- Uranium
- Solar
- Wind
- Hydro
- Geothermal
- Biomass
- Waste

Production

- Reforming
- Gasification
- Electrolysis
- HT-Splitting
- Thermo-Solar
- Solar direct
- Central
- On site

Distribution

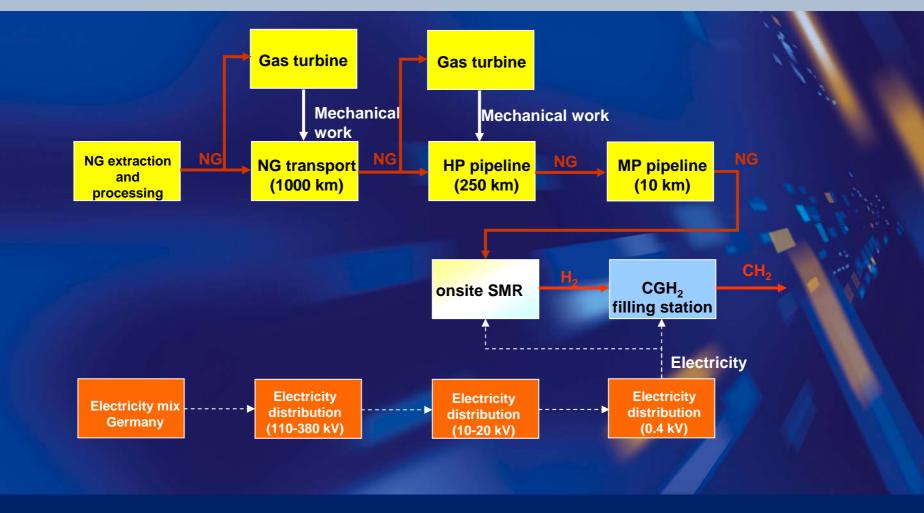

Conditioning

- Compression
- Liquification
- Synthesis

Transport

- Pipeline
- Truck
- Ship

Well-to-Wheel parameters and data origin



Basic WtW data (for EU) have been researched by CONCAVE/EUCAR/JRC and are widely accepted,

...but high complexity affords detailed knowledge of correlations and processes as well as powerful calculation methods (e.g. E3database from LBST).

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

Example for a H₂-supply chain: CH2 from on site reforming of natural gas

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

EVS-22

Present WtW studies

VOLUME 1

Association as a second as a s

rti Anorton Andrio

XECUTIVE SUMMARY REP

Wellson Wheel Energy Use and

http://www.transportation.anl.gov **GM WtW North America**

A CONTRACTOR

June 2001

http://www.lbst.de/gm-wtw

ENERGY USE JUD GAS WILL

Exonnobii

-

FUE

USE GAS E VERICE SYSTEM

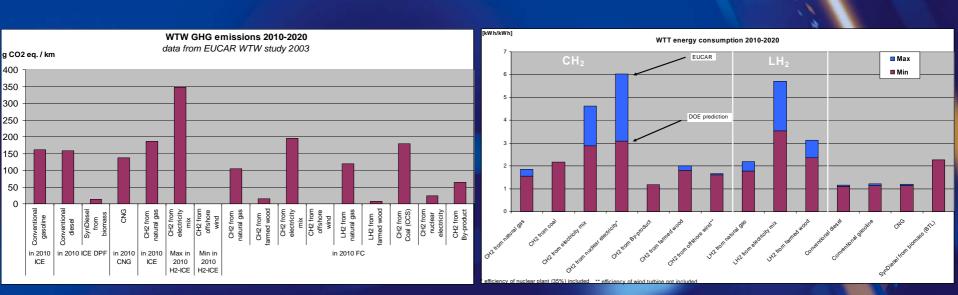
TOTAL FINA ELF

GM WtW Europe

http://ies.jrc.cec.eu.int **CONCAWE/EUCAR/JRC**

FUTURE AUTOMOTIVE ANALYSIS OF POWERTRAINS OF AND

1 THE EUROPEAN CONTEXT


GUU

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

EVS-22

WELL-to-WHIELS Report Version 10 January 2004

Sample of actual WtW data visualization

Premises are difficult to show, data are difficult to compare, add and sort. No interactivity and difficult replication.

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

EVS-22

Criteria to define a vehicle development strategy

Energy Consumption
 CO2 emissions
 Fossile fuel consumption

First 3 criteria to be considered in Optiresource

Investment, cost

- Marketshare, market
- Performances
- PM, NOx, HC emissions
- Grey energy
- Recycling

. . .

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

Basic specifications of OPTIRESOURCE software

- Interactive and easy-to-use SW to get quick and clear answers to many questions:
 - how do different energy chains compare in terms of energy consumption, GHG emissions etc.?
 - what are the chains allowing for the optimization of the consumptions and emissions?
 - what is the impact of different energy scenarios?
 - and many others.....

Interactive software & database are stored in a USB key

- SW only needs Windows 2000/XP with MS ".net Framework"
- SW is designed as a modular and scalable system. The same data-base has different "modes" and different user interfaces
- In the current version 2 "modes" and 3 user interfaces are implemented

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

Implementation of OPTIRESOURCE software

"Modes"

- "Query mode": the user selects the chains according certain criteria and then the results are visualized (more than 500 chains available)
- "Scenario Mode": the users defines scenarios in terms of energy supply and energy demand and then visualize and compare them (available starting from January 2007)

User interfaces

- User interfaces:
 - "For Experts"
 - "For All Users"
 - "For Exhibitions"

Example for WtT results: Energy consumption and GHG-emissions for H₂production from various primary energy sources

		Prima	ary energy	Process		Fuel	P	owertrain		
HAIN	Well to Tank only		energies 4 / 19	Processes 6 / 29		Fuels 2 / 10	P	owertrains		-
RITERIA	2 Selected	VII Nuclear		wood col., cen. gas.+ret., wood col., O/S gas.+reton		Compressed H				
ME	1 Selected	Nuclear Renewab	ام	wood col.,black liquor gas wood farm., cen. gas.+ref		Synthetic			GO	
EGION	Europe	Sun	ie	wood fam., 0/S gas.+ref		Dimethylether (Methanol	(DME)			
AR	1 Selected	Water Wind		 wood farming, cen. gas.+ Synthesis 	eforming+ <u>H2</u> liq., rc 0 / 1	Synthetic Diese				
ATA CODE			RESULTS							- <i>1</i>
			Visualization	Unit	Order 1	Order 2	Color	Show Fossil Energy		5
			VISUAIIZALIOIT		by primary energy	by fuel		Show energy reference	ce chain 🚺	
								Show data variance	V	
10 / Coal / co	oal, cen. gas.+reforming, H2 pipe, on site com. /	Compressed	Energy Consum	ption		R1 Greenhou	se Emissions		R2	
rdrogen 10.7 Natural F	Gas / NG pipe 4000km, cen. ref., H2 pipe, O/S c	om / Compressed								
rdrogen	Sas / NG pipeline 4000km, on site reforming+H2									
rdrogen										
10 / Natural C drogen	3as / NG pipe 4000km, central reforming+H2 liq.,	road / Liquid								
10 / Wind / el	I. gen. (wind), cen. e.sis, H2 pipe, O/S com. / Co	mpressed Hydrogen								
10 / Wood Wa drogen	aste / wood col., cen. gas.+ref., H2 pipe. on site	com. / Compressed								

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

Example for TtW results: Energy consumption and GHG emissions of various drivetrains

	ster Language View Reset Ex	port I Help	I Quit I Ab	bout CAR-OR v1.1								
		Primar	y energy	Process		Fu	el	Po	wertrain			
CHAIN	Tank to Wheel only	Primary er	nergies	Processes			ls 4 / 10		ertrains 3 / 15			
CRITERIA	2 Selected						fied Petroleum Gas (LP tricity		& Diesel I Direct Inj. Particulate Filter (D			
TIME	2 Selected						tricity rogen	Diese	I Direct Injection (DICI) Direct Injection (DISI)	GO		
REGION	Europe					Comp	pressed Hydrogen	Otto	Engine (conventional - PISI)			
CAR	1 Selected					Liquic _Santi	d Hydrogen hetie	Otto	Engine (conventional - PISI) - E	ifuel 💌		×
¢ DATA CODE			RESULTS									1.00
			Visualization Absolute	Unit	Order 1	Orde		Color	Show Fossil Energy Split WTT & TTW Show energy refer	ence chain 🚺)	1
			Energy Consu	umption - Absolute		R1 G	Freenhouse Emission	ns - Absolute	1		२2	1 N 1
	sed Hydrogen / Hybrid: Fuel Cell Hybrid / A Class											6° -
2010 / Compress	sed Hydrogen / Hybrid: Otto Engine (conventional - P	ISI) / A Class										
2010 / Compress	sed Natural Gas / Hybrid: Otto Engine (conventional -	PISI) / A Class										
2010 / Diesel / H	Hybrid: Diesel Dir. Inj. Particul. Filter (DICI) / A Class											
2010 / Gasoline	/ Hybrid: Otto Engine (conventional - PISI) / A Class											

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

Example for WtW results: Vehicle drive train: Fuel cell hybrid Fuel: Hydrogen from different primary energies

		Primary	/ energy	1	Process				Fu	el		Powe	ertrain			
HAIN Complete: Well to Wheel		1 1	ergies 4 / 19	▼	Processes 6				T Fue	ls 2 / 10		Powert	ains 1 / 4		▼	
RITERIA 2 Selected		UII Nuclear		^		., cen. gas.+ret., ., O/S gas.+refor				pressed Hydro d Hydrogen	igen 🦉	Electric	ehicle with Li-lor	Detter	^	
ME 1 Selected		Nuclear Renewable				,black liquor gas				a Hydrogen hetio			enicle with 11-10 ehicle with Na-N			GO
EGION Europe		Sun		_		m., cen. gas.+ref m., O/S gas.+ref				ethylether (DM anol	E)	Bectric \ Fuel Cell	ehicle with Ni-M	H Battery		00
AR 1 Selected		Water Wind		-	^{!…} <u>wood</u> fan ➔ Synthesis	ming, cen. gas.+r	reforming+ <u>H2</u> li	д., rc 0 / 1	Synt	hetic Diesel			uel Cell Hybrid		~	
									Sim	hatic Discal/Di	acal 6106 🖂	=][
ATA CODE			RESULTS													
													_			
			Visualizatio	n	Unit		Order	1	Orde	er 2	WT	T TTW	Show Fos			
			Absolute		leq/100 Km	g CO2eq / Km	by fue		🔻 by p	owertrain			Show ene		nce chain	(\cdot)
													- Show date	a variance		
					AL 1.1											
10 / Natural Gas / NG pipeline 4000km, on site reform	ming+H2 com. / C	ompressed	Energy Cor	isumptic	n - Absolute				R1 (Freenhouse E	Emissions - A	bsolute		í		R2
drogen / Hybrid: Fuel Cell Hybrid / A Class			Energy Cor	isumptic	n - Absolute				R1 (Freenhouse E	Emissions - A	bsolute				R2
drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Natural Gas / NG pipe 4000km, oen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class	pe, O/S com. / Cor	mpressed	Energy Cor	isumptic	n - Absolute				R1 (Preenhouse E	Emissions - A	bsolute				R2
10 / Natural Gas / NG pipeline 4000 km, on site refor drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Natural Gas / NG pipe 4000 km, cen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Coal / coal, cen. gas.+reforming, H2 pipe, on sit drogen / Hybrid: Fuel Cell Hybrid / A Class	pe, O/S com. / Cor	mpressed	Energy Cor	isumptic	n - Absolute				R1 (Greenhouse E	Emissions - A	bsolute				R2
rdrogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Natural Gas / NG pipe 4000 km, oen. ref., H2 pip rdrogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Coal / coal, cen. gas.⊬reforming, H2 pipe, on sit	e, O/S com. / Cor te com. / Compres	mpressed	Energy Cor	isumptic	n - Absolute				R1 (Preenhouse B	Emissions - A	bsolute				R2
drogen / Hybrid: Fuel Čell Hybrid / A Class 10 / Natural Cas / NG pipe 4000km, cen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Coal / coal, cen. gas-wreforming, H2 pipe, on sit drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Wind / Acl, gen. (wind), cen. e.sis, H2 pipe, O/S o brid: Fuel Cell Hybrid / A Class	pe, O/S com. / Cor te com. / Compres com. / Compressed	mpressed ssed d Hydrogen /	Energy Cor	sumptic	n - Absolute				R1 (Greenhouse E	Emissions - A	bsolute				R2
drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Natural Cas / NC pipe 4000km, cen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Coal / coal, cen. gas. Heforming, H2 pipe, on sit drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Wind / el. gen. (wind), cen. es.st, H2 pipe, O/S o brid: Fuel Cell Hybrid / A Class 10 / Wind Waste / wood col., cen. gas. Hef., H2 pipe drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Matural Cas / NS pipe 4000km, central reformin	e, O/S com. / Cor te com. / Compres com. / Compresser e. on site com. / C	mpressed ssed d Hydrogen / Compressed	Energy Cor		n - Absolute				R1	Greenhouse B	Emissions - A	bsolute				R2
drogen / Hybrid: Fuel Čell Hybrid / A Class 10 / Natural Cas / NG pipe 4000km, cen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Oxal / coal, cen. gas-weforming, H2 pipe, on sit drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Wind / Ael, gen. (wind), cen. e.sis, H2 pipe, O/S o brid: Fuel Cell Hybrid / A Class 10 / Wood Waste / wood ool, cen. gas-wef., H2 pipe drogen / Hybrid: Fuel Cell Hybrid / A Class	e, O/S com. / Cor te com. / Compres com. / Compresser e. on site com. / C	mpressed ssed d Hydrogen / Compressed	Energy Cor		n - Absolute				R1	Greenhouse B	Emissions - A	bsolute				R2
drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Natural Cas / NC pipe 4000km, cen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Coal / coal, cen. gas. Heforming, H2 pipe, on sit drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Wind / el. gen. (wind), cen. es.st, H2 pipe, O/S o brid: Fuel Cell Hybrid / A Class 10 / Wind Waste / wood col., cen. gas. Hef., H2 pipe drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Matural Cas / NS pipe 4000km, central reformin	e, O/S com. / Cor te com. / Compres com. / Compresser e. on site com. / C	mpressed ssed d Hydrogen / Compressed	Energy Cor		n - Absolute				R1	Sreenhouse E	Emissions - A	bsolute				R2
drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Natural Cas / NC pipe 4000km, cen. ref., H2 pip drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Coal / coal, cen. gas. Heforming, H2 pipe, on sit drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Wind / el. gen. (wind), cen. es.st, H2 pipe, O/S o brid: Fuel Cell Hybrid / A Class 10 / Wind Waste / wood col., cen. gas. Hef., H2 pipe drogen / Hybrid: Fuel Cell Hybrid / A Class 10 / Matural Cas / NS pipe 4000km, central reformin	e, O/S com. / Cor te com. / Compres com. / Compresser e. on site com. / C	mpressed ssed d Hydrogen / Compressed	Energy Cor		n - Absolute				R1 (Preenhouse E	Emissions - A	bsolute				R2

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

EVS-22

Example for WtW results: Vehicle drive trains: Fuel cell and ICE

Fuels: Compressed hydrogen, gasoline and compressed natural gas

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

EVS-22

Example of QUERY-MODE visualization "for All Users"

Dr. C.Mohrdieck, M. Piffaretti, Dr. J.Wind, P.Froeschle

EVS-22

Outlook

Now....try out yourself - on the EVS-22 DaimlerChrysler stand

Join the Optiresource Foundation:

- In order to involve mores stakeholders, DaimlerChrysler intends to create a Foundation, open to other companies: you can join!
- Joining the Foundation, you participate in the definition of the specifications for the further development of the software.
- Buy & use (starting 2007, January) Optiresource software for optimizing your vehicle/fuel development strategy.
- Suggest further aspects to be included in the software.

....check out www.optiresource.org

DAIMLERCHRYSLER

Thank you very much for your attention!

ご清聴どうも ありがとうございました。

Just what the environment needs from a car. Water.

If nature had one wish, what do you think it would be? A car that doesn't produce exhaust? We thought so too, That's why our hydrogen powered Fuel Cell vehicles only emit water. In fact, as they've proven in recent road tests, they may well be the alternative drive systems of the future. At DaimlerChrysler Research we're developing these intelligent technologies today. For the automobiles of tomorrow.

To find out more about 'Energy for the Future' visit www.daimlerchrysler.com.

DAIMLERCHRYSLER Answers for questions to come.